1.) Grundzeichen und Richtungen | |
Alle Zeichen gelten im Prinzip je nach Ausrichtung für Rhythmus und Tonhöhe. Im Normalfall gelten die Tonhöhenzeichen in allen Oktaven. Die Oktavlage wird durch Linien oder durch Zusatzzeichen definiert (siehe Oktaven). |
|
O (Tonhöhe) Keine Note/Pause O (Rhythus) Kein Rhythmus, rhythmisch frei |
|
1 (Tonhöhe) Grundton (festgesetzt auf c+- 0 Cent) 1 (Rhythmus) Grundschlag |
|
Rhythmus Grundschlag x8, x4, x2, :2, :4, :8 | |
C in verschiedenen Oktaven | |
Genauere Lage innerhalb einer Oktave | |
3 Quinte (G+2 Cent)
1/3 Qunte nach unten oder (je nach Oktavlage): Quarte (F-2Cent)
Grundschlag x 3
Grundschlag :3 |
|
5 Reine Terz (E- 14 Cent)
1/5 Reine Terz nach unten (As +14 Cent)
Grundschlag x 5
Grundschlag :5 |
|
7 Natursepte (B-31 Cent)
1/7 Natursepte nach unten (D+31 Cent)
Grundschlag x7
Grundschlag :7
|
|
Platzhalter (z.B. Wiederholung des letzten Elements (Ton, Akkord oder Sequenz)) | |
Der Ton wird gehalten | |
2.) Kombinationen | |
Alle Zeichen können miteinander beliebig kombiniert werden. Gegenüberliegende Zeichen kürzen sich im Extremfall bleibt der Grundton übrig. Jedes Zeichen kann (auch in den Kombinationen) in allen vier Richtungen verwendet werden. |
|
3x3=9=Quinte der Quinte oder eine Oktave tiefer große Sekunde (D+4 Cent) |
|
C-G-D-A-H-Fis Die Quintenreihe (Quinten nach oben+2 Cent pro Quinte) |
|
C-F-B-Es-As-Des-Ges (Quinten nach unten, -2 Cent pro Quinte) |
|
H-12 Cent 3x5=15 (Terz der Quinte, also H +2-14 Cent=-12 Cent) |
|
Es+16 Cent 3/5 (Terz unter der Quinte, also Es +2 + 14 Cent= 16 Cent) |
|
C+50Cent (3x3)/(7x5) (2 Quinten nach oben, Natursept nach unten, Terz nach unten. C->G+2 Cent->D+2+2=4 Cent->E+4+31 =35Cent->C 35+14=49 Cent) |
|
3.) Vorzeichen | |
Fasst man ein beliebiges Notenzeichen in ein Quadrat ein, so gilt es als "Vorzeichen". Alle folgenden Notenzeichen werden um das betreffende Intervall verschoben. Ob nach oben oder nach unten verschoben wird, kann durch die Oktavlage definiert werden, muss aber nicht. |
|
Verschiebt alle folgenden Notenzeichen um eine Quinte. Die genaue Oktavlage wird hier nicht festgelegt. Quasi wird jedem Zeichen im Kopf eine Quinte hinzugefügt. |
|
Transponiert alle folgenden Töne exakt um eine Quinte nach oben. |
|
4.) Rhythmische Vorzeichen | |
Man kann die rhythische Struktur recht genau darstellen. Das kann man sich vorstellen wie eine Taktangabe, die aber wesentlich mehr Informationen enthält. |
|
Anzahl/Notenwert |
|
Trennt die Ebenen | |
Definiert ein Element genauer | |
Drei Ebenen werden hier definiert.
|
|
5.) Primzahlen | |
Höhere Primzahlen werden dargestellt, indem man den Ton unter der Primzahl durch einen Querstrich \ von dem Ton über der Primzahl abtrennt. Sie werden dann wie neue Grundzeichen verwendet. (Aus Primzahlenzeichen kann selbstverständlich nicht herausgekürzt werden.) |
|
11 Naturquinte (Fis-49 Cent) |
|
1/11 (Fis+49 Cent) | |
13 Natursexte (As+42 Cent) | |
1/13 (Es-42 Cent) | |
11x11/3 (2x-49 Cent-2 Cent, F- 100 Cent (entspricht E+/- 0 Cent) | |
Wenn zwei Primzahlen nebeneinander liegen, dann wird das durch einen zweiten, kleineren Querstrich symbolisiert. Je nachdem, ob sich die höhere Primzahl unter oder über der niedrigeren befindet, ist der kurze Strich über oder unter dem langen. | |
23 (Fis+28 Cent) | |
6.) Ergänzung |
|
Jedes Notenzeichen kann von einem Kreis umfasst werden. Das kann für die Übersicht hilfreich sein. Es hat sonst keine Auswirkung. (Das entspricht der mathematischen Aktion *1) |
|
23 (Fis+28 Cent) | |
7.) Temperierungen |
|
Das Wesen der Temperierungen ist es, einen bestimmten Bereich durch gleiche Teile zu teilen. Man benötigt also einen unteren Referenzton, einen oberen Referenzton (Achtung: Hier ist die Oktavlage unverzichtbar!) , dann die Anzahl der Töne durch die das jeweilige Intervall geteilt wird und die Nummer des jeweiligen Tons. Ich zähle von unten nach oben. Die Nummer kann auch durch ein x ersetzt werden, wenn eine allgemeine Angabe der Stimmung und kein spezieller Ton gemeint ist. |
|
Der erste von zwölf Tönen in der temperierten Stimmung, in diesem Fall cis. |
|
In der temperierten Stimmung kann man statt dessen auch die Notennamen verwenden (Hier der Ton Gis/As): |
|
Allgemeine Anzeige, dass auf die zwölfstufige gleichschwebende Temperierung gewechselt wird. |
|
Gleichschwebende Viertelton-Stimmung. Hier werden die Vierteltöne gezählt |
|
Hier wird das Terzkomma der reinen Terz E auf sechs Quinten E-B verteilt. |
|
Anmerkung: Auch die Zahlen in den Temperierungen können gekürzt werden: Ein Beispiel in der temperierten Stimmung: 12/12 entspräche dem Grundton. 6/12 = 1/2, weil es die Oktave in zwei genau gleiche Teile teilt. |
|
Die temperierten Töne können mit allen weiteren Tönen kombiniert werden. Der Ton in diesem Beispiel wäre also 4 Temperierte Halbtöne unter dem 15.Oberton. Es wäre also ein G-12Cent.
Wegen der besseren Lesbarkeit würde ich auf die Spiegelung der Tonzeichen bei den Temperierungszeichen verzichten. Das erklärt sich ohnehin durch die Platzierung.
Auch in diesem Beispiel kann man statt 4/12 auch 1/3 schreiben. Denn die Oktave wird durch drei gleiche Teile geteilt. |
|
8.) Weitere Töne | |
Für Töne, die sich auf keine der oben Angegebenen weisen darstellen lassen, bleibt noch die Möglichkeit, die als Zahl darzustellen. |
|
Hier die Zahl "Pi", die natürlich auch als Ton umgesetzt werden kann. Wir gehen immer von den Referenzzahlen der Obertonreihe aus. Der Ton liegt etwas über dem 25. Oberton |
|
9.) Strecken und Stauchen |
|
Wie schon weiter oben beschrieben, gibt es schließlich noch die Möglichkeit, die gesamte grundlegende Obertonreihe, also das gesamte System zu strecken oder zu stauchen. Hier wird ein beliebiges Intervall, vorzugsweise die Oktave (oder auch mehrere Oktaven) einem beliebigen anderen Intervall gleichgesetzt. Das wirkt sich dann auf sämtliche Töne aus, so als würde man die gesamte Obertonreihe auseinander ziehen oder zusammen drücken. Daher wird dieses Zeichen auch in einem Viereck notiert, denn es handelt sich um ein Vorzeichen, das sich auf alle weiteren Töne auswirkt. |
|
Streckung, so dass die Oktave der kleinen None gleichgesetzt wird. |
|
Stauchung, so dass die Oktave der großen Septe gleichgesetzt wird. |
|
10.) Wiederholungen |
|
Der durch die Klammer markierte Bereich wird wiederholt. Auf diese Weise können bei der Wiederholungen Änderungen angegeben werden. |
|
Wenn man sich bewusst macht, dass man mit wenigen Regeln und einer Handvoll Grundzeichen unendlich viele Tonzeichen erhält, wird einem erst klar, welch ein Wunderwerk die Musik ist, denn nur durch die Logik des Systems, das zugrunde liegt, ist das möglich. |